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ABSTRACT The second question relates to the nature of
the solutions obtained by the above algorithms. It

Current numerical algorithms for constructing has been demonstrated that these algorithms can
optimal quantizers encounter difficulties if either sometimes converge to a quantizer which is locally
an optimal solution does not exist, or if local optimum, but does not have the globally minimum dis-
minima are present. In this paper we show that an tortion [2]. This can obviously present some diffi-
optimal quantizer may not always exist, and present culties in problems with several minima. Some modi-
a condition on the distortion measure, and another fications in the optimization algorithms to over-
condition on the probability distribution, either come this problem have been suggested [2,9], but
of which guarantees existence of an optimal solu- this greatly increases the computation time. A cri-
tion. Then we comment on the role of symmetry in terion to determine the uniqueness of stationary
optimal quantization and discuss the validity of points would be useful. For twice-differentiable
one method that has been used to prove uniqueness density functions the existence criterion in [6] is
of the optimal solution. applicable. In general, however, determining

uniqueness seems to be a more difficult problem than
I. Introduction and Preliminaries the first. The authors are not aware of any other

results which address the problem of uniqueness.

In recent years much work has been done to l Recent algorithms already are capable of hand-
investgat degnt eaor hmu or opt ont ling general distributions and complex cost func-investigate design algorithms for optimal quanti- tions 121 and it will be correspondingly more dif-

zation 11-5]. A popular approach is to use numer- ficult tc answer the two questions presented above.
ical techniques to minimize a mean distortion func- Many of the previously mentioned results may not be

tion. With this philosophy, one way to generate applicable anymore. Therefore these questions need

an optimal design is to successively improve on a to be examined further so that existing optimization
sequenceprocedures may be used with confidence that the re-
which are necessary (but not sufficient) for a
stationary point. Max [1] in 1960 developed a set sulting solution is indeed optimal.

of necessary conditions applicable to differentia- In this paper, we first develop necessary and

ble cost functions, and suggested one algorithm sufficient conditions for the existence of multi-
for the mean square distortion measure. Variants dimensional quantizers. Then we turn to the ques-

of this algorithm have been successfully applied tion of uniqueness and, through several examples,

to scalar quantization problems [1,4]. Linde, et point out some interesting results.

al. [2], generalizing on the work of Lloyd [10), First we give a few definitions and establishal. 2],genealiing n te wok o Llod [O], some notation. An N-level k-dimensional vector

presented a set of necessary conditions similar to
those of Max, but having much wider applicability. quantizer is a mapping Q: Rk , R which assigns to
Their algorithm handles arbitrary multi-dimensional the input vector x an output vector Q(x) chosen from
distributions (i.e., vector quantizers) and very a finite set of N distinct vectors {yi: Y 1 k,
general distortion measures. Two considerations i=l,2,...,N}. When optimal quantizers are being
arise in the use of either of the above algorithms, considered with an error based on the Euclidean
The first question is the existence of an optimum norm, there is no loss of generality in assuming the
quantizer (i.e., a solution to the optimization "nearest neighbor" assignment rule: Q(x) is that
problem). This is directly related to the conver- member of the set which is nearest to x in Euclid-
gence of the two algorithms, because if an optimum
does not exist, then the algorithms either do not.converge, or may converge to a non-minimum solution ed manner. This rule will be adopted throughout the

We will present an example of the latter possibil- rest of this paper. Scalar quantization (k1) is

Ity. It is of interest, therefore, to set down considered to be a special case of vector quantiza-
some conditions under which a globa: minimum may tion. Let X be a random vector taking values in R
exist. For twice-differentiable probability densi- and having a cumulative distribution function F. A
ty functions an easily checked convexity test is measure of the performance of a quantizer Q applied
available [6]. Essentially this determines when to the random vector X is the mean distortion func-
the optimization problem has a unique stationary tion
point. However, there are many probability densi-
ties of practical interest for which the criterion D - D(QF) -fCo(lx - Q(x)[l)dF(x). (1)
does not apply. A different viewpoint was taken in
[7,8] which presented sufficient conditions on the Here denotes the Euclidean norm in k and Co(t)
form of the distortion function. Both of these re-
suits are summarized in the development, is an appropriate cost function. For example, the
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rth-power cost function Co (t) tr is a popular decreasing for t > 0 and lower semi-continuous, then

choice. For simplicity we write Co(I xl) = C(x). a globally optimum N-level quantizer exists for any
positive integer N.

Because of nearest neighbor assignment, a quantizer This theorem gives a sufficient condition on
is fully specified by its set of output levels the form of the cost function Co(t) so that (1) may
{yil. Thus when F is fixed we may write D(Q,F) = achieve its minimum possible value. The dstrlbu-

D(yly 2,.... yN
). The quantizer optimization prob- tion F is completely general, and all of the assump-

lem is to find the global minimum point of D(yl y2,  tions are directed towards the cost function. Thei , 2  key assumption here is lower semi-continuity; the

.... yN), if any. A quantizer is said to be locally other two conditions merely serve to define the in-

optimum if its output levels form a locally optimum tuitive notion of a difference-based cost function.
point of D(Yl These conditions may not be weakened without adding

•y other qualifications, as the following example
Let Qn and Q be vector quantizers. We say shows. Let the cost function be defined as

that the sequence [QnI converges to Q if Qn(x)-Q(x)
nn0 (2)Itj<

at all continuity points of Q. Equivalently, in C0(t) 1 2 I (2)
view of nearest neighbor assignment, {Qn) convergesl 25jt .

to Q if the output levels of the Qn s converge to Now let X take on a discrete distribution such that

the output levels of Q. Notice that this defini-
tion allows the limiting quantizer Q to have fewer P(X=2) = P(X= -2) = 1/4
levels than the quantizers Q n" k+2

Let Fn and F be k-dimensional probability dis- P(X=2-1/k) = P(X= -2+(/k) - 1/2 k=1,2....n (3)
tribution functions. Recall that the sequence (Fn}  It is easy to see that with N=l level, the distor-
is said to converge weakly to F (written F64 F) if tion (1) cannot be minimized. In fact, any reason-
Fn(X)-*Fix) at every continuity point x of F. able numerical technique for optimizing (1) will

Sk generate a sequence of quantizers with improving
A function C: R -.R is said to be lower distortions, but the limiting quantizer exhibits

semi-continuous if worst-case performance. Note that we are concerned
here with global minima, and not merely local min-

lim inf C(y)> C(x) all x. ia or stationary points, of which this example has
6-O O<lj-xJl6 infinitely many.

This example can be generalized. Suppose that
An equivalent condition is that for any {xnl and x, C0(t) is non-negative, non-decreasing for t > 0, and
Xn x implies is not lower semi-continuous at to > 0. Then the

lim inf C(xn) C(x). discontinuity (of the first kind) at to must have
the same character as that in (2), namely, C (t -)

A continuous function g: IkRu is said to be uni- < C (t ), and it will be possible to construct a
formly integrable with respect to the distributions 0 0

{Fn} if Jlg(x)IdFn(x) < for all n and distribution with atoms at +t0 , such that the mean

distortion (2) cannot have a minimum. Thus if we

lim sup r g(x)(dF n(x) = O. wish to avoid this situation, we must require Co(t)
a- n lixiha to be lower semi-continuous. On the other hand, it

has been shown in Theorem 2 that lower semi-contin-
II. Existence of Optimal Quantizers ulty is sufficient to guarantee the existence of a

global minimum. Therefore we have the following
In this section we review some existence the- theorem.

orems for globally optimal quantizers, and then Theorem 3. Suppose that Co (t) is non-negative and
prove some stronger results. The first two theo- 0
rems below are proved in [7,8]. The present non-decreasing for t > 0. Then a necessary andstatement of Theorem is a slight but straight- sufficient condition that, for any N and any dis-straeten ion of eorem 1 pisvalit bt stribution function, a minimum distortion N-levelforward extension of that proven In [8]. quantizer exists, is that Co(t) be lower semi-con-

Theorem 1. Suppose that the cost function C (t) is tsnuot.0
0 tinuous.

non-negative, non-decreasing for t > 0, and lower In some situations there might be some uncer-
semi-continuous. Then for any distribution F the tainty about the distribution F being quantized.
distortion D(y, y2 ... yN) is a lower semi-contin- This theorem says that if we choose a lower semi-

uous function of the output levels. If Co(t) is continuous cost function, then no matter what dis-
tribution might be involved, we can be sure that the

continuous, then O(Y1 9y2P... ,YN) is continuous, distortion achieves a minimum. Moreover, this as-
Moreover, if F Is continuous, then D(yl~y2, ..,yN

)  surance vanishes if the function is not lower semi-
on continuous. All of the popular cost functions, suchIs continuous, even if CoCt) Is not required to be t

semI-continuous. as the r th-power cost function, satisfy the require-ments of Theorem 3.
Theorem 2. Let F be a given k-dimensional distri- Theorem 3 characterizes a class of cost func-
bution function. If Co(t) is non-negative, non- tions so that (2) can be minimized universally.
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The converse question is also of some interest. symmetry. In applications, usually the probability
That is, we wish to characterize a class of distri- density to be quantized is not precisely known.
butions for which the same property holds. A Typically, the greatest uncertainty is associated
partial answer may be found in Theorem 1. For if with the tails of the density, while the central
the distribution function F is continuous, then part may be well estimated. If the nominal density
D(Yly 2 ....yN

) will be a continuous function of f0 is symmetric, the actudl distribution may be any

the output levels. Using the same methods in [8] member of the mixture class of symmetric densities
that were used to prove Theorem 2, it can be shown
that the mean distortion is minimized by some N- f(l-C)f + ch: h(x) is a symmetric univariate
level quantizer. This gives the following suffi- 0 density
ciency condition.

Theorem 4. Suppose that the distribution F of the for some positive c. We show that with an rthpower

random vector being quantized is continuous, Then cost function, there is some member of this mixturefor any cost function Ct) that is non-negative class of symmetric densities which has a non-sym-o metric optimal quantizer. First we state a theorem
and non-decreasing for t > 0, a globally minimum from [9] which will be used in the subsequent proof.
distortion N-level quantizer exists for every N. This theorem holds for vector quantizers.

For example, the well-known Cantor distribu-
tion [11] is continuous, although singular with Theorem 5. Assume that Co(t) is a non-constant

respect to Lebesgue measure. Nevertheless, any function which is non-negative, non-decreasing for
reasonable cost function yields a distortion func-
tion that can be minimized. Theorem 4 is satisfy- t > 0 and continuous. Suppose that F F, and that

ing because in many practical situations the random Q is an optimal N-level quantizer for Fn. If C(x-y)
vector being quantized has an absolutely continu- n ir for
ous distribution, and so a large class of differ- is uniformly integrable with respect to n
ence-based cost functions is available, each y e R, then every limiting quantizer Q of the

sequence fQn} is optimal for F.

111. Uniqueness and Symmetry of Quantizers seu ncef sotmlfrF
Now we can state and prove a theorem for scalar

The results of the previous section are valid quantizers.

for both vector and scalar quantizers. In this Theorem 6. Let the cost function be given by C (t)
section, we shall be mostly concerned with scalar trquantizers.~~~~~~~~ Thog xmls e hl on u for some positive r. Let N be a positive even
quantizers. Through examples, we shall point out integer and let f be a given syimmetric density
some interesting aspects about symmetry and o e
uniqueness of optimal quantizers. function with finite rth absolute moment. For any

Many popular univariate density functions pos- given c, 0 < E < 1, there exists a symmetric density
sess even symmetry, e.g., the zero mean Gaussian function h(x) such that for the mixture density
density, the Laplace density and the generalized (lO-)f + ch, no optimal N-level scalar quantizer
Gaussian densities [12. When this symmetry is 0

present, it is a common practice to look for an is symmetric.

optimum symmetric scalar quantizer, i.e., one whose Proof: For simplicity we take N=2. The proof
output levels are symmetrically disposed about the generalizes easily to higher even N. Define
origin (4,5]. Since in this case only half of the
output levels have to be computed, considerable (Cx! - n+l)/2 n-l < jxl < n
computational savings are possible, especially when1
the number of levels N is large. Unfortunately, it h (x) = - n-l)/2 n < xj < n+l
is not true that the optimal quantizer for a sym- n

metric density function is itself symmetric. So 0 elsewhere. (5)
this procedure can result in a sub-optimal design.
Consider the density given by This probability density function consists of two

triangular masses centered at +n. Now form the
jxj/3 + 5/12 jxj < 1 mixture density

f(x) = - jxJ/72 1 < lxi < 7 fn(X) = (l-E)nf0(nx) + enhn(nx).

7 ! lxi. (4) As n becomes large, the contribution of fo becomes

This density has two minimum mean squared two-level probability mass around the origin, and that of hn
quantizers Q(x) and Q(-x) given by becomes two probability masses equally distributed

X x 1 around +1. In other words, the distribution rep-

Q(x) = resente by fn converges weakly to a distribution
3 x > 1. with the cdf:

These have mean squared errors D = 2.61. By com- c x < -l
parison the best symmetric two-level quantizer for
f(x) has output levels at + 61/36 and mean squared c/2 -1 < x < 0
error D - 2.74. Similar examples can be construc- F(x) =
ted for any number of levels N and for other cost l-E/2 C < x < 1
functions. This example makes it clear that we
cannot in general hope to simplify the problem of 1 I < x
constructing optimal quantizers by appealing to
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It is a simple matter to verify that C(x-y) might then wonder about the strictness of Fleischer's

Ix-yir is uniformly integrable with respect to condition (6). Can it, for example, be weakened to
hold almost everywhere on the real line? The answer

F where Fn is the distribution function of n is no. For example, the density given in (4) satis-
Thus Theorem 5 can be applied. Taking {Q}n to be fies Fleischer's condition everywhere in [-7,7] that

the second derivative exists, yet it has three
an arbitrarily chosen sequence of optimum 2-level different stationary points (locally optimum quan-
quantizers for {Fn}, one sees that every convergent tizes). By taking a mixture (1-c)f(x) +

subsequence of {Qn } must approach an optimum con- ce x1/2/-, where f(x) is given in (4), we can get

figuration of levels for F. It is easily seen that a positive density which satisfies (6) almost every-
there are exactly two optimal 2-level quantizers where; but again, this mixture density has three

for F. For example, with a mean square error cri- distinct locally optimum quantizers. Clearly, some
terion (r=2) the optimal sets of output levels are care must be exercised in extrapolating Theorem 7
{-!:/(2-), 1} and (-1, </(2-c)), which are clearly beyond its stated conditions. The following exam-
non-symmetric, especially for small E. ples may be illuminating.

Since the limit quantizers are non-symmetric, Let the cost function be C0 (t) = ItI. It is
there must be infinitely many densities fn having well known that for N=l, the optimum output level

non-symmetric optimum quantizers Qn' The optimal is a median. Consider the sequence of densities

quantizer for (1-c)f 0 (x) + Eh(x) is obtained by a 0 < Ix! < 1

scaling the output levels of Q n by the factor n. f (x) 1/2 - a I < IxI < 2Thus there are infinitely many hn satisfying the

requirements of the theore, 0 elsewhere. (8)
The contaminating density hn xW need not have Each density has a unique median and therefore the

the triangular shape in (5). It could just as unique minimum mean absolute deviation 1-level
easily have been made infinitely differentiable. quantizer is Q(x) = 0. As a - 0 the uniform limit
For example, two Gaussian bell-shaped curves cen- of the sequence is the density
tered at +n would have given the same result. The
phenomenon described in the theorem has been noted 1/2 1 < lx <2
previously [7]. However, the present version is f(x) =

more general than the earlier one. 0 elsewhere.
Having seen these examples, we might be in-

terested in finding some condition so that a sym- It is clear that this density has infinitely many
metric probability density will have a symmetric medians, and so the optimum quantizer cannot be
optimum quantizer. To the authors' knowledge, the unique.
only condition which guarantees this is uniqueness A second example illustrates another difficulty.
of the optimum quantizer. For if a density has a 2
single locally optimum quantizer, then that quanti- Let the cost function be C (t) = t 

, giving the mean

zer must be !mmetric. Fleischer [6] derived a squared error criterion. In this case the optimum
simple criterion that guarantees uniqueness of the 1-level quantizer level is the mean. Consider the
stationary point in the case of mean square dis- sequence of densities
tortion.

Theorem 7. Suppose that a twice-differentiable x 2 2(X-n)2/2.positlve univariate density function f with finite fn(X) W e (.)l x + .1l (9)
second moment satisfies the inequality 

n VF/ n "

d2  As n - = the seq-ience converges uniformly to the

d 2  en f(x) < 0 (6) standard Gaussian density
dx 

2

for all x. Then the mean squared error D(y,y 2, f(x) = e' /2

yN) of an N-level quantizer (N arbitrary) has 
a

unique stationary point, and this stationary point In fact, Ifn(x) - f(x)I < 1/n uniformly. Neverthe-

is a global minimum. less each f (x) has a mean (optimum output level)
Many densities of practical interest, Inclu- n

ding the Gaussian density, satisfy (6). However, of 1, whereas it is well known that the optimum l-

one that does not meet the criterion is the La- level Gaussian quantizer has the output level at 0.

place density [12) So the limiting quantizer is not even locally op-

fx) = 1/2 •"Ix
. These examples illustrate that uniform conver-

gence of the sequence of densities involved is not

By taking the Laplace density as the uniform limit enough to assure that the limiting quantizer is
of a sequence of densities (a - ) either optimal or unique. Some other ingredients

r 1xi, are necessary, and these are given in the following
- 1 ( theorem and corollary. This theorem is stated for

ex) - I12 I'l I - e '(7) multivariate distributions, but the application to
univariate densities is straightforward.

Fleischer showed that it also possesses a unique Theorem 8. Assume that C (t) is non-negative, non-
minimum mean square distortion quantizer. One decreasing for t > 0, and continuous. Let F be aderaigfrt 0 n cniuu.LtFb
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probability distribution function which has isola- at least m local minima. Now if each of the fn 'S
ted locally optimum quantizers Q. Suppose that has a unique stationary point, it must be true that

(Fn) is any sequence of distributions converging f has exactly one stationary point. This gives the

weakly to F, such that C(x-y) is uniformly integra- following corollary.
ble with respect to {Fn}. Then for each Q. there Corollary 9. Assume that C (t) is non-negative,

exists a sequence of quantizers {Qj1 so that Qni non-decreasing for t > 0, and continuous. Let fn' f

is a locally optimum quantizer for F n, and Q.Q be density functions such that fn .f and C(x-Y)fn(x)
as n * .. is uniformly integrable for all y (with respect to

Proof: Due to the assumption of nearest Lebesgue measure). Suppose that each of the f 'snneigh-borassignment, we can represent Qj by a has a unique optimum quantizer. Then either f has a

product vector 9 = 12yl'Y2.".yN} , where the out- unique optimum quantizer, or it has several minima

put levels yi e R
k are indexed in order of in- which are not separated.

Going back to the previous examples, we can see
creasing norm, Since the Q are isolated locally that in (8) the local minima (medians) of the limi-
optimum quantizers, there exists, for each j, an ting density are not isolated. In (9), the uniform

oJand a closed ball integrability assumption is not satisfied. Needlessto say, both of these requirements are met by Fleis-

ojIQ)= {y e R kN: li-9jll S €oji cher's construction (7).
IV. Conclusion

in which Yj is the only minimum of D(Q,F). Hence- We have studied the questions of existence,

Forth j will be a fixed integer and we may let uniqueness and symmetry of optimal quantizers with
Co = Eoi" We will prove the following proposition: difference-based distortion measures. Two theorems

For all 0 <E <Eo, there exists an integer no  are proved which guarantee existence of an optimal
quantizer: the first a necessary and sufficient

such that for n > n0 , each of the D(Q,F n) have a condition on the form of the cost function and the
local minimum point inside the open ball second a sufficient condition on the distribution.Then we investigated a way to prove uniqueness of a

N (Q) = e RkN: <  ) local optimum by considering sequences of densities.
Several examples are presented to clarify the dis-
cussion.

centered on Y . As a final comment, we note that the existence

The proof Is by contradiction. Suppose the results in Theorems 3 and 4 can be straightforwardly
proposition were no, true for some positive c < . extended to scalar uniform step size quantizers, or

Then we could find a subsequence IF ) and quan-

tizers Qk so that Qk is on the boundary of N (QAcknowledgeent ei
£ This research was supported by the Air Force

D(Qk,Fn) < D(QFn) for Q c N (Q Office of Scientific Research under Grant AFOSR-8i-
n k n k e307
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